
Cartesian Equipments as Databases

AtCat Seminar

Michael Lambert

18 October 2022

1



Question: What is “knowledge representation?”

Partial answer: OLOGs “ontology logs” [KS12]

OLOGs are schematic representations of concepts, their attributes,

interconnections, and facts about them. Example: arginine

arginine an electrically-charged side chain

an amino acid a side chain

is

has

has

is

2



Identify:

1. objects = concepts

2. attributes = arrows

3. facts = commutative diagrams

OLOG = finitely-presented category

Certain type of database scheme (that is, a small category [Spi12])

Functors C → Set thought of as “populating” a scheme C with

actual data in the form of tables

3



Example: let C denote the scheme

Employee Department

String1 String2

first
last

isInmanager

4



Example: data table on C given by

Employee

ID First Last Mgr isIn

101 David Hilbert 103 q10

102 Bertrand Russell 102 x02

103 Alan Turing 103 q10

Each arrow out of Employee is a column; Employee names the

table; spans end up being functional: David Hilbert has one

manager and works in one department etc... But not every

relationship is functional; think of “friend of” or “enemy of.”

5



“Bicategorical or Relational OLOGs” [Pat17]

1. a finitely-presented ‘bicategory of relations’ in the sense of

[CW87]; in particular a relational OLOG is a cartesian

bicategory;

2. arrows encode relations rather than functions;

3. more expressive than functional OLOGs: functional

relationships encoded as “maps;”

4. Drawback: cartesian bicategories not so intuitive; more

equations; have to make choices when setting up an OLOG;

equational reasoning hard

6



If only there were a way to combine or synthesize the theories of

functional and relational OLOGs.

A double category D is a pseudo-category internal to categories.

1. D0 = category of objects and arrows

2. D1 = category of proarrows and cells

3. cells look like

a b

c d

f

Mp
g

N
p

4. ⊗ external composition associative up to coherent

isomorphism; external identity functor y : D0 → D1

7



Many examples: sets and spans, sets and relations, categories and

profunctors, rings and modules, metric spaces, posets, convex

thingies, Markov categories

Any bicategory is a double category without ordinary arrows and

cells with trivial external source and target.

Any 2-category is a double category without proarrows and only

cells with trivial internal domain and codomain.

Likewise any double category has an underlying (2-)category

(functional part) and an underlying bicategory (relational part).

Thus, just as a cartesian bicategory is the basis of a relational

OLOG, we expect that a cartesian double category is a possible

generaization incorporating the missing “functional aspects.”

8



A double category D is cartesian [Ale18] if D → D×D and D → 1

have right adjoints in the 2-category of double categories, pseudo

double functors and (vertical) transformations.

A double category is an equipment if D1 → D0 × D0 is a

(bi)fibration (equivalently if every ordinary arrow has a proarrow

companion and proarrow conjoint).

Theorem ([Lam])
The bicategory underlying any cartesian equipment is a cartesian

bicategory.

Define: a ‘double category of relations’ is a locally posetal

cartesian equipment satisfying Carboni and Walter’s Frobenius

Axiom. A double-categorical OLOG is then a finitely-presented

‘double category of relations’.

9



That D is an equipment means that each ordinary arrow f has a

companion and conjoint: proarrows f! and f ∗ with special cells

a b a a b a a a

b b a b b b b a

f

f!p
1

b
p

1

f!
p

ap
f 1

b
p

f ∗p
f f

f ∗
p

ap
1

satisfying some equations. In relations, companions and conjoints

are graphs and opgraphs.

10



From companion and conjoints all “restriction” and “extension”

cells can be constructed as external composites:

A B A B

C D C D

f g

np

f

np

f!⊗n⊗g∗
p

grestr⇝

and
A B A B

C D C D

f g f g

mp

f ∗⊗n⊗g!
p

mp
⇝ ext

Restrictions are cartesian and extensions are opcartesian with

respect to the source-target projection D1 → D0 × D0.

11



In the case of relations, restrictions are computed by pullback and

extensions are images:

P S R I

A× B C × D A× B C × D
f×g

⟨s,t⟩
⌟

⟨s,t⟩

f×g

In general, restrictions and extensions allow us to formulate

complex propositions in double-categorical OLOGs.

12



Example time: Stargate SG1

Figure 1: SG1

Summary: MacGyver leads USAF team through a wormhole gate

to various (Canadian) planets in search of tech and alies to defend

against the threat of the Goa’uld (basically ancient aliens).

13



Posit two individuals

1 1

system lord jaffa

Apophis Teal’c

constants of type “system lord” (rulers of the Goa’uld) and type

“jaffa” (warrior-slaves of the system lords).

Figure 2: Apophis Figure 3: Teal’c

14



Functional OLOG style of a certain fact: “Teal’c is (or rather was)

the first prime of Apophis”

1

system lord jaffa

Apophis

first prime

Teal’c

Just ask that the diagram commutes.

But perhaps we’d like to view “first prime” as a relation.

15



Start with a niche:

1 1

system lord jaffa

Apophis

first prime
p

Teal’c

complete using a restriction:

1 1

system lord jaffa

Apophis

first prime
p

Teal’c

Teal’c is First Prime of Apophisp

restr

Then impose the requirement that the top proarrow is the terminal

object in D(1, 1) (or just admits an arrow from the terminal).

16



Restrictions and extensions construct propositions from types and

other propositions.

Tabulators construct types from propositions. Say we have a

proposition

symbiote 1
is goa’uldp

expressing what is means for a symbiote to be a Goa’uld.

Figure 4: A larval symbiote

17



By taking the tabulator, we have a type to work with

goa’uld

symbiote 1
is goa’uld

p
tab

Further conditions on tabulators mean we can go back and forth

between propositions and types as we please.

18



So, how do we get from OLOGs to data manipulation?

Innovation: model theory

Recall: a structure-preserving functor on a small category

M : C → D is a model of C , viewed as a theory (finite products,

finite limits, a topos etc) in suitably structured D (something like

Set or some other topos)

A data instance is a cartesian pseudo double functor D → Rel,
that is, a “model” of D in relations. (Note: any pseudo double

functor preserves the equipment structure, hence restrictions and

extensions.)

Upshot: this reduces examples of data manipulation to functorial

semantics and computations of pullbacks and images in Rel.

19



In [Spi12] get data manipulation (and “data migration generally”)

via adjoint functors. Given database scehmes C and D , together

with a translation F : C → D , there are adjoint functors, namely,

[D ,Set] [C ,Set] ΣF ⊣ F ∗ ⊣ ΠFF∗

ΣF

ΠF

Substitution behaves like a select query; the right adjoint provides

an inner join; the left adjoint is a skolemized outer join.

Using double categories we can do these operations without

translations of schemes, hence without adjoint functors, by simply

setting up the OLOGs carefully.

Select queries, filtering, joins end up being computations of images

and pullbacks in Rel.

20



Simple OLOG describing a “mission concept”

date × location purpose × teammissionp

instanced by a table

mission

date location purpose team

2-6-98 P41-771 search & rescue SG3

7-31-98 Cimmeria assist Cimmerians SG1

1-2-99 P3R-272 investigate inscriptions SG1

10-22-99 Ne’tu search & rescue SG1

8-6-2004 Tegalus negotiation SG9

21



Perhaps we only care about when our teams were off-world but not

about either the date or purpose. Extend along projections:

date × location purpose × team

date team

missionp

π1 π2

date and team
p

ext

The instance M : D → Rel preserves the extension.

22



Compute the image in relations.

date and team

date team

2-6-98 SG3

7-31-98 SG1

1-2-99 SG1

10-22-99 SG1

8-6-2004 SG9

This would be a “select” operation in SQL.

23



We might also filter by those missions of a certain team, say, SG1.

Start by asking for an individual constant:

1 teamSG1

and form the restriction cell

date × location purpose × 1

date × location purpose × team
mission

p

1 1×SG1

SG1 missionsp

restr

24



In this case, the returned data would be a subtable consisting only

of certain rows of the original mission table, that is,

SG1 missions

date location purpose

7-31-98 Cimmeria assist Cimmerians

1-2-99 P3R-272 investigate inscriptions

10-22-99 Ne’tu search & rescue

that is, “filter” for rows with a certain value in SQL.

Indeed there are other examples of joins using a construction like

local products.

25



We can also do (inner) joins of tables with a column in common.

In general, this looks like:

A× B C × D

A× B × B C × D

1×∆

p▷◁qp
1

p×q
p

restr

Think of this as giving two tables, namely, p and q with entries

from sets A, B, C and D. The tables have entries in one column in

common, namely, those from the set B.

26



A simple OLOG:

person skill person team
expertise

p
membership

p

Data:

expertise

person skill

Hammond command

Kovacek law

Maybourne chicanery

Morrison combat

O’Neill command

Rothman archaeology

Simmons sociopathy

Warren combat

membership

person team

Kovacek SG9

Morrison SG3

O’Neill SG1

Rothman SG11

Warren SG3

27



Form the restriction cell:

person skill × team

person × person skill × team

∆

expertise ▷◁membershipp

1

expertise×membership
p

restr

In relations this is just computed as a pullback of the product

relation along the diagonal crossed with the identity.

28



That is, form the cartesian product of all pairs from the two

relations and match the person argument:

expertise ▷◁ membership

person skill team

Kovacek law SG9

Morrison combat SG3

O’Neill command SG1

Rothman archaeology SG11

Warren combat SG3

which is the join of the two along the common column.

29



So, it appears we can replicate SQL-type data operations without

recourse to adjoint functors. This is “data munging.”

Figure 5: Ologging Cimmerians

But why does all of this work? Because we can program it.

30



Julia Language (2009 Bezanson et. al. https://julialang.org/)

1. high-level, fast, used in scientific computing, numerical

analysis, alternative to R and Python

2. macros like LISP

3. key feature: multiple dispatch (can overload a function

symbol as long as you’re clear what types arguments have)

4. Algebraic Julia and CatLab

(https://github.com/AlgebraicJulia/Catlab.jl): category

theory enhancing capabilities of scientific computing

5. machinery of GATs (generalized algebraic theories):

categories, monoidal categories, bicategories, (now) double

categories, cartesian double categories, and equipments

31



32



Here’s the pattern:

1. load theory

2. define required syntax and any extra equations

3. generate instance that behaves according to the rules of the

GAT

4. perform desired computations

5. in particular, the GAT will build products, restrictions,

extensions, tabulators, etc given basic types, arrows,

proarrows, and cells.

33



Remaining questions:

1. outer joins?

2. program relation-valued double functors

3. query language?

4. translations of double-categorical schemes for full data

migration; adjoints between virtual double categories of (lax)

double functors?

For more you can see my blog post:

https://topos.site/blog/2022/09/data-operations-are-functorial-

semantics/

34



THANK YOU!

Figure 6: Golf time

35



References

Evangelia Aleiferi.

Cartesian Double Categories with an Emphasis on

Characterizing Spans.

PhD thesis, Dalhousie University, 2018.

A. Carboni and R.C.F. Walters.

Cartesian bicategories I.

Journal of Pure and Applied Algebra, 49:11–32, 1987.

Robert E. Kent and David I. Spivak.

Ologs: A categorical framework for knowledge

representation.

PLoS ONE, 7(1), 2012.

36



Michael Lambert.

‘Double Categories of Relations’.

Theory and Applications of Categories (to appear).

Evan Patterson.

Knowledge representation in bicategories of relations.
2017.
https://arxiv.org/abs/1706.00526.

David I. Spivak.

Functorial data migration.

Information and Computation, 217:31–51, 2012.

37


	References

